The ELAC Discovery uses a Quad Core ARM9 Processor running at up to 1.2Ghz. It has 512MB of storage for the operating system and 8GB of flash for meta data storage. For the analog outputs a separate linear power supply powers two (one for each set of analog outputs) Cirrus Logic CS4398 DAC’s (192kHz 24-Bit) with Burr Brown op-amps.

The two digital “Toslink” outputs are a simultaneous output. They are considered a single output. The Digital, Analog 1, and Analog 2 outputs are completely independent and can playback different or the same content simultaneously.

We have had good luck with a couple of “No New Wires” methods of connection such as PowerLine adapters and Wireless Bridges. PowerLine adapters utilize the copper wiring in your electrical outlets as the Ethernet cable. We have used adapters from?TP-Link?and?Netgear?with good luck. Of course every house different and we cannot guarantee that these will work in your home. We have also used Wireless Bridge devices which convert an existing Wi-Fi connection into a wired connection.

The connection from your wireless router to the Discovery Music Server must be a wired connection (This decision was made to ensure a smooth user experience. High Resolution music can take quite a bit of bandwidth), however once the Discovery is connected to your home network you can use Wi-Fi to control and navigate the Discovery as well as play content to supported wireless speakers and end points.

The Discovery Server supports WAV, AIFF, FLAC, ALAC, OGG, MP3, and AAC. For high resolution audio the Discovery supports 24-Bit 192kHz WAV, AIFF, ALAC, and FLAC files.

To add a wired second zone to the Discovery Music server simply connect a different set of outputs from the server to another amplifier, receiver, or powered speaker in the other room. By selecting that output from the bottom right of the Roon Essentials application you can now choose what you want to listen to and control the volume in the additional zone. If you want to add a wireless zone, the Discovery Music Server supports AirPlay devices (Apple TV, AirPlay Speakers, AirPlay Receivers), Roon End Points, Sonos Speakers ELAC Discovery End points. For additional information on using AirPlay product with the Discovery take a look at the Discovery Video?section of the forums.

The Roon Essentials App for Windows and OSX can be downloaded from the below links. The app for iOS and Android can be downloaded from the respective app stores.

Roon Essentials for Windows
Roon Essentials for Mac
Roon Essentials for iOS
Roon Essentials for Android

There is no need for an additional license. The Discovery Music server uses an embedded license that is tied to the Discovery Music Server. As long as you are the owner of the device you can continue using it. If you decide and some point to sell your device simply logout of the device before you sell it. The new owner will create an account and the license will transfer to the new owner.

Generally the frequency range specified indicated the limits of where the performance has started to diminish. Many dome tweeters that are specified to extend out to 20kHz are already up to 3dB down at that point. By engineering the tweeter to extend to over 25kHz, we make sure that it has not already rolled off by 20kHz.

The best choice of cone materials is governed by the intended application. Not all materials are ideal for all applications. The advantage of aluminum for the bass driver is its good balance between performance and cost. It is easily formed, consistent in production and has a good ratio of stiffness to weight. More exotic materials have very little further advantage in this size of bass driver. With the midrange driver, we generally find ourselves working with materials that are not rigid over their operating range. For example in the Debut speaker range, we use Aramid fiber. This gives us the capability of carefully controlling the cone flexing to get the best performance. This difficulty in design is somewhat ameliorated by having a three way speaker, and also now allows us to change to an approach that eliminates flexing within the operating range. Aluminum, as optimized in the Uni-Fi midrange, has its first flexure mode at a high 8kHz which results in excellent performance.

The principal advantage is that the drivers are operating over a narrower frequency range. As a result they can be better optimized for their intended purpose. In particular, the bass/midrange driver is no longer required to reproduce both bass ad mid frequencies simultaneously. This reduces the total amount of power going into each driver, reduces distortion and produces a clearer midrange and more dynamic bass performance.

First, what is a concentric driver? In general, it is a driver where the tweeter and bass/midrange driver have been combined into one compound unit. The tweeter is mounted at the apex of the cone, sitting directly on top of the bass driver pole piece, where the dust-cap would normally be found. The result of this is to match the off-axis characteristics of both drivers so that the sound is more even across the frequency range. The imaging will then be better, the sound character will be more consistent throughout the listening area, and will be les influenced by the acoustics of the listening space.

The requirement for the microphone is simply that it has a response that has some capability down to 20Hz with useable signal to noise ratio. The exact response is of no importance since that function is eliminated form influencing our process. We have found that the majority of modern phones and tablets meet this requirement. For those few that do not, it is possible to purchase a simple low cost calibrated mic that plugs into the mic input of the phone or tablet to give better performance.

The Auto EQ works in a way that is subtly different from conventional EQ methods. In those, a calibrated microphone is required, and the response measured at the listening location is adjusted to match some “ideal” response determined by the software engineer. This is not the response that was designed by the speaker engineer themselves! Ideally, when the subwoofer engineer designs the subwoofer they have an idea of what performance they want the speaker to achieve. The limitation is that the room will modify this, hence the need for EQ. But the ideal is that the EQ gives at the listening location the response desired by the speaker engineer. This is the approach utilized in ELACs’ process. It allows for a clever change in the requirement of the microphone. We no longer require a calibrated microphone. In fact we utilize the microphone built into the smartphone itself!

The process is to hold the phone very close to the subwoofer, the so-called “nearfield”. At this location, the measured response is devoid of almost any influence from the room, and is measuring in fact the designed response of the subwoofer. Once this response is captured, the smartphone is relocated to the listening location and a second measurement made. Next a set of filters is adjusted automatically to make the response measured at the listening location match that made in the nearfield of the subwoofer. The actual performance of the microphone is now of no importance: it is the same for both measurements and we are simply adjusting to minimize the difference! The sound heard at the listening location is now the one that the designer wanted you to have. It’s a very cool technique.

In low cost subwoofers, a vent is used to assist the bass out capability of the subwoofer. The vent is typically tuned to operate at the lowest frequency that the subwoofer is designed to operate at. At this frequency, the vent takes over the task of moving air to produce bass, and the driver itself does little of the work. The downside of this is that the air velocity can became very large, particularly with small diameter vents. At these high velocities the air becomes turbulent and you can hear this as “chuffing” noises. Although this can be helped by adding flares to both ends of the vent, it’s difficult to eliminate entirely. If the vent diameter is increased the airflow can be reduced, but the vent has to be made longer to keep the same tuning frequency. At some point, the vent becomes too large to fit into the box!
The solution is to replace the vent with a passive radiator. This is a driver unit of the same size or larger than the main woofer, but it has had its motor structure removed. It becomes just a passive diaphragm driven by the air inside the cabinet. The mass is chosen to match the equivalent of the mass of air that was in the vent, but because of it’s large size the movement is much less than the air it replaces. As a result, there is no “chuffing” and it behaves much more linearly.

All controls for the subwoofer that would normally be located on the back of the subwoofer have been replaced by a remote adjustment over Bluetooth, accessible from our Sub Control 2.0? app running on an Andoid or iOS phone. This makes it much more convenient: the setup of the sub can be done in real time from your listening position, without constantly having to get up to adjust the controls on the back of a conventional subwoofer.

* If you own a S10EQ or S12EQ please download our latest firmware for these models. This new firmware will allow continued control of these subwoofers with our latest SUB Control 2.0 app. The older app no longer works with these models.?

When a receiver has dual subwoofer outputs the two are typically duplicates of each other with a common internal connection. You are therefore free to choose whichever is most convenient. If they are independent, and you have only one subwoofer, then simply choose one of them and indicate in the receiver setup which one you have chosen to use.

The purpose of the spikes are to increase the cabinet stability to prevent them being knocked over, particularly when they are used on carpeted floors. In the case of wood floors or floors that may be easily damaged by the spikes, we recommend that you place something under the tip of the spikes to prevent damage.

You may well get away without using a subwoofer at all, even with our bookshelf speakers. All our speakers are designed to have an extended bass response, giving up some efficiency in order to achieve this. If your listening habits are predominantly with music that doesn’t have super low bass recorded, or not at high levels, then you can enjoy the simplicity of just the main pair of speakers. However, if you have a large listening space, like to listen to music very loud or to music that contains lots of low bass or want to use the speakers as part of a home theater setup then a subwoofer would be advantageous.

All speakers are governed by the laws of physics. There are in particular three parameters that are inter-linked : Box size, low frequency response and efficiency. This limits your choices. You cannot have both a small box and a high efficiency and an extended bass response. If you want low bass and a small box you cannot have high efficiency.
If high efficiency is a goal, then the speaker can play loud with only a modest power amplifier, but will not have good bass response. However, the number of opportunities for playing loud music at home tend to be limited. Most of the time we listen at only modest sound levels. As such, we sacrifice bass response for all our music, for the trade-off that occasionally we can play loud.
The Debut series priority was to be able to have extended bass and so we gave up somewhat on efficiency, recognizing also that higher power amplifiers are lower cost than ever, if one needs the ability to play loud!